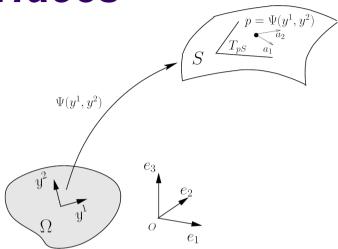
VI Singularités en théorie des coques minces

- Rappels sur le modèle de coque de Koiter
- Etude théorique des singularités
- Simulations numériques avec des techniques de maillages adaptatifs
- Exemple de coques paraboliques inhibées
- Coques elliptiques bien-inhibées et sensitives

Introduction

- <u>Théorie des coques</u> : apparition de couches limites lorsque l'épaisseur relative ε tend vers 0.
 - contenant des déplacements de plus en plus amples et tendant à être singuliers (singularités dans la direction perpendiculaire à la couche)
 - de plus en plus fines
- → besoin d' un maillage fin dans ces zones, mais uniquement dans la direction perpendiculaire à la couche :
 - maillage adaptatif
 - maillage anisotrope

Théorie des surfaces



$$(y^1, y^2) \in \Omega \xrightarrow{\psi} \vec{\psi}(y^1, y^2) = (\psi^1(y^1, y^2), \psi^2(y^1, y^2), \psi^3(y^1, y^2)) \in S$$

Vecteurs de la base covariante en (y¹,y²)

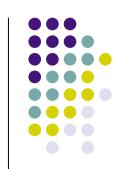
$$\vec{a}_{\alpha} = \vec{\psi}_{,\alpha} \qquad \qquad \vec{a}_{3} = \frac{\vec{a}_{1} \wedge \vec{a}_{2}}{\|\vec{a}_{1} \wedge \vec{a}_{2}\|}$$

• Tenseur métrique :

$$a_{\alpha\beta} = \vec{a}_{\alpha} \cdot \vec{a}_{\beta}$$

• Tenseur de courbure :

$$b^{\alpha}_{\beta} = -a^{\alpha} \cdot N_{,\beta} = N \cdot a^{\alpha}_{,\beta}$$



Base contravariante : (a^α,a^β,a₃) telle que

$$a^{\beta}.a_{\alpha} = \delta_{\alpha}^{\beta}$$
 $a_{\alpha} = a_{\alpha\beta}a^{\beta}$

• Dérivée d'un vecteur tangent :

$$a_{\alpha,\beta} = \Gamma^{\gamma}_{\alpha\beta} \, a_{\gamma} + b_{\alpha\beta} a_{3}$$

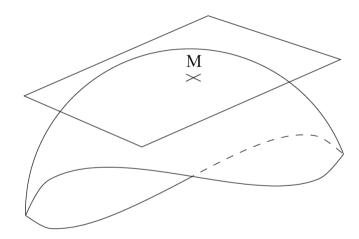
• Dérivée covariante d'un vecteur :

$$D_k v_i = \partial_k v_i + \Gamma_{ki}^j v_j$$

Dérivée covariante d'un tenseur :

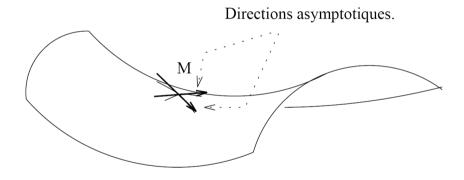
$$D_k T^{ij} = \partial_k T^{ij} + \Gamma_{kn}^j T^{in} + \Gamma_{km}^j T^{mj}$$

Surface elliptique



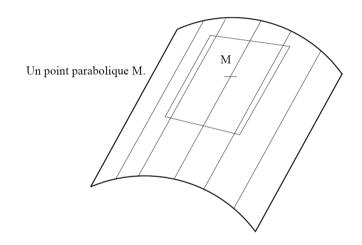
- tous les points sont elliptiques
- les courbures principales sont de même signe
- pas de directions asymptotiques

Surface hyperbolique



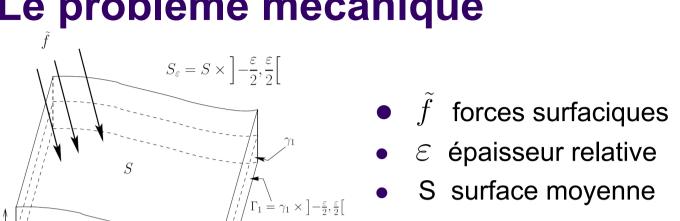
- tous les points sont hyperboliques
- courbures principales de de signe opposé
- 2 directions asymptotiques distinctes

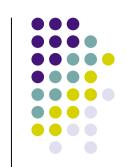
Surface parabolique



- tous les points sont paraboliques
- une des courbures principales est nulle
- une direction asymptotique (double)

Le problème mécanique





Formulation variationnelle du modèle de coque de Koiter pour une coque d'épaisseur ϵ :

$$a_m(u,v) + \varepsilon^2 a_f(u,v) = b(v)$$

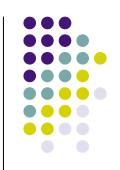
avec

 $\Gamma_0 = \gamma_0 \times \left[-\frac{\varepsilon}{2}, \frac{\varepsilon}{2} \right]$

$$a_m(u,v)=\int_S A^{\alpha\beta\lambda\mu}\gamma_{\lambda\mu}(u)\gamma_{\alpha\beta}(v)dS$$
 énergie de membrane

$$a_f(u,v) = \frac{1}{12} \int_S A^{\alpha\beta\lambda\mu} \rho_{\lambda\mu}(u) \rho_{\alpha\beta}(v) dS$$
 énergie de flexion

Déplacements inextensionnels



• Espace des déplacements inextensionnels G:

$$G = \{ v \in V; \ a_m(v, v) = 0 \} = \{ v \in V; \ \gamma_{\alpha\beta}(v) = 0 \}$$

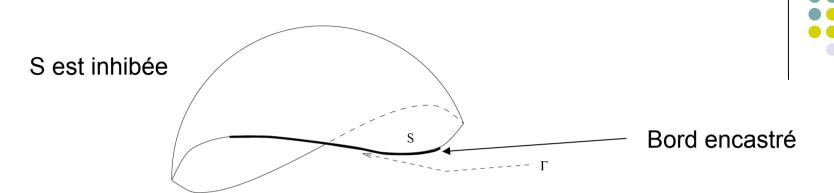
Caractérise la rigidité de la coque

 G dépend de la nature de la surface moyenne (elliptique, parabolique ou hyperbolique) et des C.L

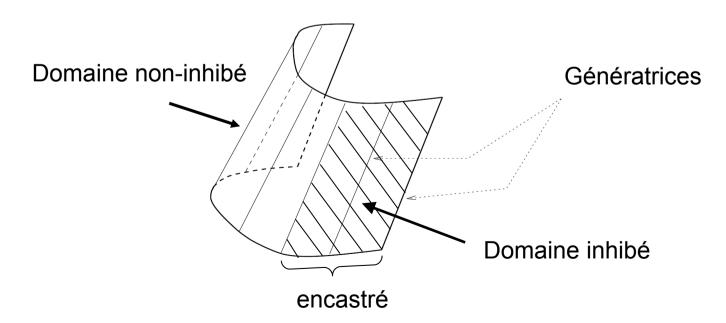
Si G={0} la coque est inhibée

Si G ≠ {0} la coque est non inhibée

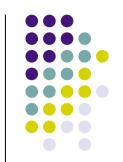
Coques elliptiques inhibées



Coques paraboliques inhibées



Le problème limite



Modèle de Koiter

$$(u_1, u_2, u_3) \in H^1 \times H^1 \times H^2$$

Modèle de membrane si G={0}

Trouver
$$u^0 \in V_m$$
 tel que
$$a_m(u^0, v) = b(v) \ \forall v \in V_m$$

$$u_3 \in L^2(\omega)$$

0} Modèle de flexion pure si G ≠ {0}

Perte de régularité de u₃ et apparition de couches limites

Non étudié

Les différentes couches

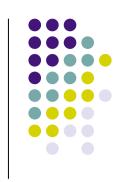
- Couches limites sur le bord de S
- Couches internes lorsque le chargement est singulier :
 - le long des courbes où le chargement est singulier
 - le long des courbes caractéristiques (=courbes asymptotiques de S) tangentes à une courbe où le chargement est singulier
- Dans ces couches, les déplacements sont singuliers
- Propagation le long des caractéristiques



Epaisseur des couches limites

Properties	Non	Characteristic	
	Characteristic	hyperbolic	parabolic
layer thickness	$\mathcal{O}(arepsilon^{1/2})$	$\mathcal{O}(arepsilon^{1/3})$	$\mathcal{O}(arepsilon^{1/4})$

Etude des singularités des déplacements



- Réduction du système de membrane à un système d' EDP pour u₃
- Basé sur l'analyse micro-locale des singularités :
 - Les coefficients géométriques sont fixés au point étudié
 - Seules les dérivées d'ordre supérieur sont considérées
- Le système de membrane s'écrit $A\vec{u} = \vec{f}$

$$\mathbf{avec} \quad A = \begin{pmatrix} -A^{1\beta\gamma1}\partial_{\beta}\partial_{\gamma} & -A^{1\beta\gamma2}\partial_{\beta}\partial_{\gamma} & A^{1\beta\gamma\delta}b_{\gamma\delta}\partial_{\beta} \\ -A^{2\beta\gamma1}\partial_{\beta}\partial_{\gamma} & -A^{2\beta\gamma2}\partial_{\beta}\partial_{\gamma} & A^{2\beta\gamma\delta}b_{\gamma\delta}\partial_{\beta} \\ -A^{1\beta\gamma\delta}b_{\gamma\delta}\partial_{\beta} & -A^{2\beta\gamma\delta}b_{\gamma\delta}\partial_{\beta} & A^{\alpha\beta\gamma\delta}b_{\alpha\beta}b_{\gamma\delta} \end{pmatrix}$$

Etude des singularités des déplacements

 Généralisation de la règle de Cramer pour les systèmes algébriques :

$$Det(A)u_3 = A_{13}^C f^1 + A_{23}^C f^2 + A_{33}^C f^3$$

• Pour un effort normal $(f^1 = f^2 = 0)$ on obtient :

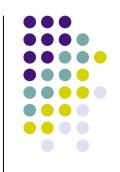
$$E\left[b_{22}\partial_{1}^{2} + b_{11}\partial_{2}^{2} - 2b_{12}\partial_{1}\partial_{2}\right]^{(2)}u_{3} = a^{2}\left[a^{11}\partial_{1}^{2} + a^{22}\partial_{2}^{2} + 2a^{12}\partial_{1}\partial_{2}\right]^{(2)}f^{3}$$

$$a = det(a_{\alpha\beta})$$
Composantes covariantes

Composantes covariantes du tenseur de courbure

Expression similaire obtenue pour u₁ et u₂

Ordres des singularités : principaux résultats



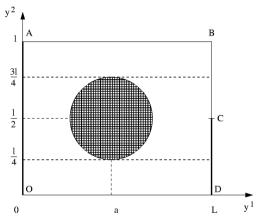
- Si la singularité du chargement est le long d'une ligne non caractéristique :
 - u₃ a la même singularité que f³
 - il n' y a pas de propagation
- Si la singularité du chargement est le long d'une ligne caractéristique :
 - u_3 est de 4 ordre plus singulier que f^3 si le point est parabolique
 - u_3 est de 2 ordre plus singulier que f^3 si le point est hyperbolique
 - il y a propagation de la singularité
- Des résultats similaires sont obtenus pour u₁ et u₂ (avec des ordres différents)

Ordres des singularités

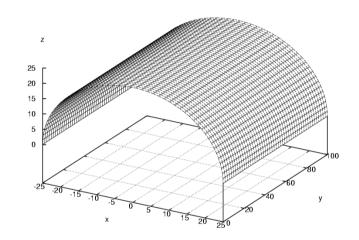
Properties	Non	Characteristic	
Troperties	Characteristic	hyperbolic	parabolic
singularity order of u_3	+0	+2	+4
singularity of the			
tangential displacements	-1 (or less)	+1 (or less)	+3 (or less)
propagation	no	yes	yes

Etude des singularités pour une coque parabolique

• Exemple du demi-cylindre



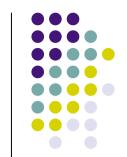
$$\overrightarrow{\psi}(y^{1}, y^{2}) = \left(R\cos\frac{y^{2}}{R}, y^{1}, R\sin\frac{y^{2}}{R}\right)$$



Données:

- L=100 mm, I = 25π mm, R=25 mm
- E=210 000 Mpa, *v=0.3*
- $f^3=10 \varepsilon MPa$

Exemple du demi-cylindre



Propriétés géométriques

• Base locale:
$$a_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
 $a_2 = \begin{pmatrix} -\sin(\frac{y^2}{R}) \\ 0 \\ \cos(\frac{y^2}{R}) \end{pmatrix}$ $a_3 = \begin{pmatrix} -\cos(\frac{y^2}{R}) \\ 0 \\ -\sin(\frac{y^2}{R}) \end{pmatrix}$

• Tenseur métrique :
$$a = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

• Tenseur de courbure :
$$b = \begin{pmatrix} 0 & 0 \\ 0 & \frac{1}{R} \end{pmatrix}$$

→ caractéristiques : y²=constante

• Symboles de Christoffel : $\Gamma_{\alpha\beta}^{\lambda} = 0$

d'où
$$D_{\alpha}u_{\beta} = \partial_{\alpha}u_{\beta}$$

$$D_{\lambda}T^{\alpha\beta} = \partial_{\lambda}T^{\alpha\beta}$$

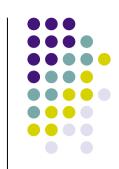
• Loi de comportement : $T^{\alpha\beta} = A^{\alpha\beta\lambda\mu}\gamma_{\lambda\mu}$

avec
$$A^{\alpha\beta\lambda\mu} = \frac{E}{2(1+\nu)} \left(a^{\alpha\lambda} a^{\beta\mu} + a^{\alpha\mu} a^{\beta\lambda} + \frac{2\nu}{1-\nu} a^{\alpha\beta} a^{\lambda\mu} \right)$$

Soit matriciellement:

$$\begin{pmatrix} T^{11} \\ T^{22} \\ T^{12} \end{pmatrix} = \frac{E}{1+\nu} \begin{pmatrix} \frac{1}{1-\nu} & \frac{\nu}{1-\nu} & 0 \\ \frac{\nu}{1-\nu} & \frac{1}{1-\nu} & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \gamma_{11} \\ \gamma_{22} \\ \gamma_{12} \end{pmatrix}$$

Exemple du demi-cylindre



Système membranaire :

$$\begin{cases} -\partial_{1}T^{11} - \partial_{2}T^{12} = f_{1} \\ -\partial_{2}T^{22} - \partial_{1}T^{12} = f_{2} \end{cases} \qquad dans \quad \omega$$
$$-b_{22}T^{22} = f_{3}$$

• Loi de comportement : $T^{\alpha\beta} = A_{11}^{\alpha\beta\lambda\mu} \gamma_{\lambda\mu}$

• Déformations membranaires
$$\begin{cases} \gamma_{11} = \partial_1 u_1 \\ \gamma_{22} = \partial_2 u_2 - b_{22} u_3 \\ \gamma_{12} = \frac{1}{2} (\partial_2 u_1 + \partial_1 u_2) \end{cases}$$

Chargement appliqué

• Effort normal appliqué : $f=f^3e_3$

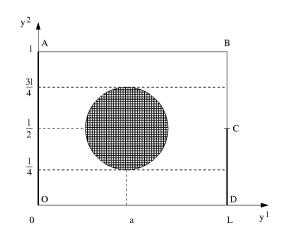
avec
$$f^3 = \begin{cases} -1 & \text{si} \left(y^2 - \frac{l}{2} \right)^2 + \left(y^2 - \frac{a}{2} \right)^2 = \frac{l^2}{16} \\ 0 & \text{sinon} \end{cases}$$

Le chargement est discontinu (singulier)

Conditions aux limites:

- La coque est inhibée

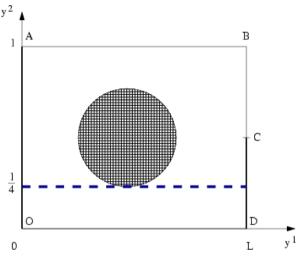
- Encastrement sur OA et CD
- Libre ailleurs

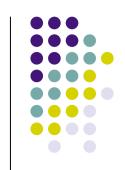


Suivant la théorie :

- les déplacements sont singuliers
- il y a propagations des singularités le long des lignes caractéristiques

Chargement





• Expression de f³ au voisinage de y²=0,25l

$$f^{3} \approx 2\sqrt{\frac{l}{2}\left(y^{2} - \frac{l}{4}\right)} H\left(y^{2} - \frac{l}{4}\right) \delta\left(y^{1} - a\right) = K \Phi\left(y^{2}\right)\Psi\left(y^{1}\right)$$

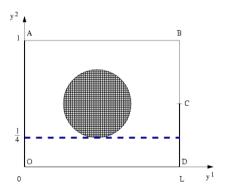
$$\begin{cases} K = \sqrt{2l} \\ \Phi(y^2) = \left(y^2 - \frac{l}{4}\right)^{1/2} H\left(y^2 - \frac{l}{4}\right) \\ \Psi(y^1) = \delta(y^1 - a) \end{cases}$$

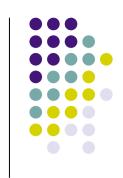
$$\begin{cases} -\partial_{1}T^{11} - \partial_{2}T^{12} = 0 \\ -\partial_{2}T^{22} - \partial_{1}T^{12} = 0 \\ -b_{22}T^{22} = f^{3} \end{cases}$$

$$\tau^{22}(y^1) = -\frac{1}{b_{22}}\delta(y^1 - a)$$

$$T^{22} = \tau^{22} \left(y^1 \right) \Phi \left(y^2 \right)$$

avec
$$\Phi(y^2) = \left(y^2 - \frac{l}{4}\right)^{1/2} H\left(y^2 - \frac{l}{4}\right)$$





$$\begin{cases} -\partial_1 T^{11} - \partial_2 T^{12} = 0 \\ -\partial_2 T^{22} - \partial_1 T^{12} = 0 \rightarrow \\ -b_{22} T^{22} = f^3 \rightarrow \end{cases}$$

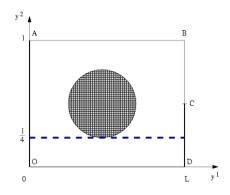
$$\tau^{22}(y^1) = -\frac{1}{b_{22}}\delta(y^1 - a)$$

$$\partial_1 \tau^{12} (y^1) = -\tau^{22} (y^1)$$

$$T^{12} = \tau^{12} (y^1) \Phi^{(1)} (y^2) + \dots$$

$$T^{22} = \tau^{22} \left(y^1 \right) \Phi \left(y^2 \right)$$

avec
$$\Phi(y^2) = \left(y^2 - \frac{l}{4}\right)^{1/2} H\left(y^2 - \frac{l}{4}\right)$$



$$\begin{cases} -\partial_1 T^{11} - \partial_2 T^{12} = 0 \\ -\partial_2 T^{22} - \partial_1 T^{12} = 0 \\ -b_{22} T^{22} = f^3 \end{cases}$$

$$\tau^{22}(y^1) = -\frac{1}{b_{22}}\delta(y^1 - a)$$

$$\partial_1 \boldsymbol{\tau}^{12} \left(\boldsymbol{y}^1 \right) = -\boldsymbol{\tau}^{22} \left(\boldsymbol{y}^1 \right)$$

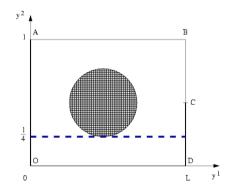
$$\partial_1 \boldsymbol{\tau}^{11} (y^1) = -\boldsymbol{\tau}^{12} (y^1)$$

$$T^{11} = \tau^{11} (y^1) \Phi^{(2)} (y^2) + \dots$$

$$T^{12} = \tau^{12} (y^1) \Phi^{(1)} (y^2) + \dots$$

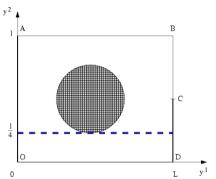
$$T^{22} = \tau^{22} \left(y^1 \right) \Phi \left(y^2 \right)$$

avec
$$\Phi(y^2) = \left(y^2 - \frac{l}{4}\right)^{1/2} H\left(y^2 - \frac{l}{4}\right)$$



• Contrainte membranaire la plus singulière

$$T^{11} = \tau^{11} (y^1) \Phi^{(2)} (y^2) + \dots$$



Loi de comportement (inverse)

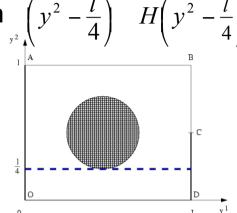
$$\gamma_{\alpha\beta} = B_{\alpha\beta\lambda\mu} T^{\lambda\mu}$$

Déformations membranaires

$$\gamma_{\alpha\beta}$$
 fonction de u

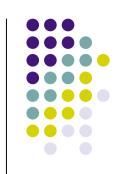
Résumé des résultats

• Effort imposé en $\int_{y^2} \left(y^2 - \frac{l}{4} \right)^{1/2} H\left(y^2 - \frac{l}{4} \right)$



$$\begin{cases} u_1 & en \quad \frac{d^2}{d(y^2)^2} \left[\sqrt{\left(y^2 - \frac{l}{4}\right)} H\left(y^2 - \frac{l}{4}\right) \right] & (de \ 2 \ ordres \ plus \ \'elev\'e \ que \ f_3) \\ u_2 & en \quad \frac{d^3}{d(y^2)^3} \left[\sqrt{\left(y^2 - \frac{l}{4}\right)} H\left(y^2 - \frac{l}{4}\right) \right] & (de \ 3 \ ordres \ plus \ \'elev\'e \ que \ f_3) \\ u_3 & en \quad \frac{d^4}{d(y^2)^4} \left[\sqrt{\left(y^2 - \frac{l}{4}\right)} H\left(y^2 - \frac{l}{4}\right) \right] & (de \ 4 \ ordres \ plus \ \'elev\'e \ que \ f_3) \end{cases}$$

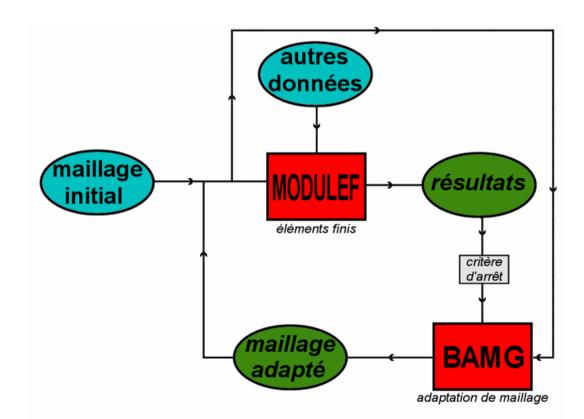
 Propagation des singularités le long de la caractéristique y²=0,25l



Calculs numériques



 Calculs numériques effectués avec 2 logiciels qui ont été couplés (thèse de C. De Souza, Paris VI, 2003)



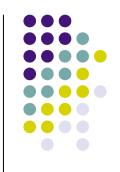
Modulef

- Logiciel éléments finis
 - développé à l'INRIA
 - version 99
- Elément coque utilisé :
 - DKTC (Discret Kirchhoff Theory)
- → avantage : seule la carte est maillée (pas d'approximation par facettes planes)

BAMG (version 0.68) (Bidimensional Anystrop Mesh Generator)

- Logiciel de maillage adaptatif
 - développé à l'INRIA
 - fonctionne en 2D
- Principe de fonctionnement :
 - Calcul à partir d'un maillage initial
 - BAMG génère ensuite, à partir des résultats obtenus, un nouveau maillage raffiné dans les zones et dans la direction où la solution varie le plus.

BAMG (version 0.68) (Bidimensional Anistrope Mesh Generator)



- Crée un nouveau maillage en utilisant une métrique modifiée
- La nouvelle métrique est calculée en utilisant le Hessien de la solution :

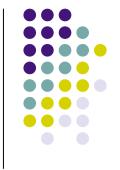
$$\mathcal{M}(t) = rac{c_0}{\epsilon} \left| \mathcal{H}
ight| \qquad ext{avec} \qquad \left| \mathcal{H}
ight| = \mathcal{R} \left(egin{array}{cc} \left| \lambda_1
ight| & 0 \ 0 & \left| \lambda_2
ight| \end{array}
ight) \mathcal{R}^{-1}$$

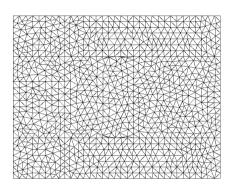
 λ_1 et λ_2 sont les valeurs propres du Hessien de la solution et R indique les directions correspondantes

Le maillage est raffiné dans les régions où les dérivées secondes sont importantes

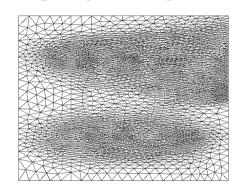
Résultats numériques

Evolution du maillage (ε=10-5)

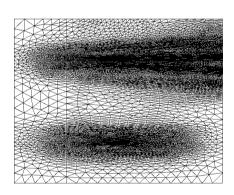




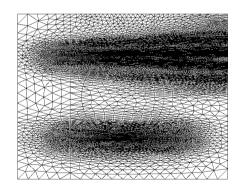
Maillage initial (11275 DDL)



Itération 2 (23226 DOF)

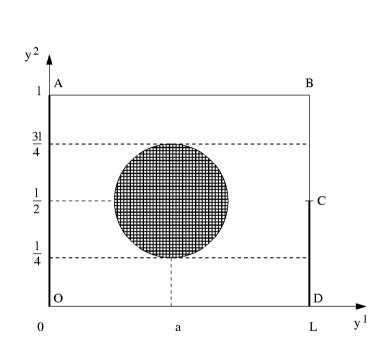


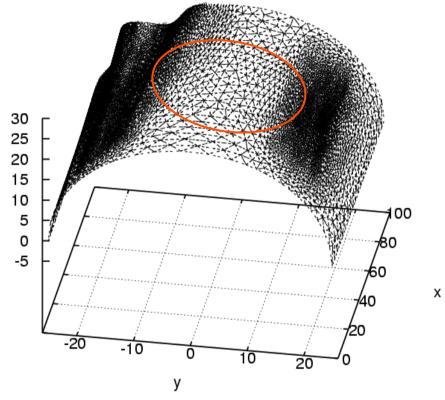
Itération 5 (66778 DOF)



Itération 7 (66283 DOF)

Domaine de chargement et déformée 3D (ε=10⁻⁵)

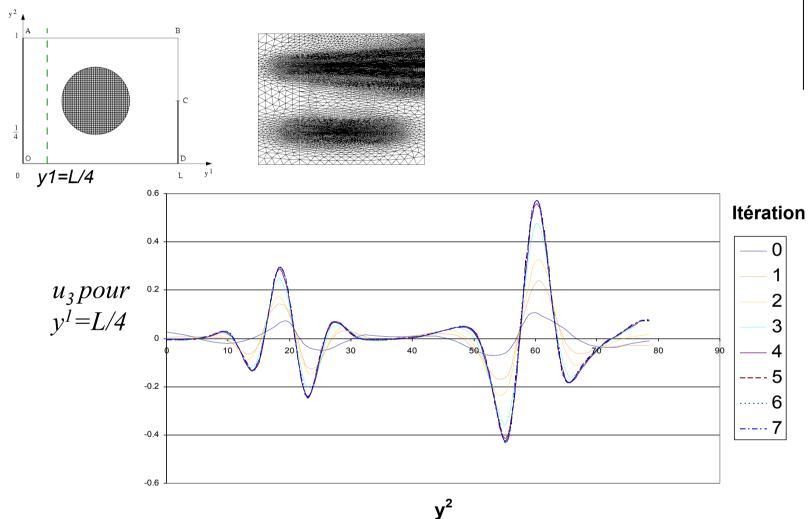




Domaine de chargement

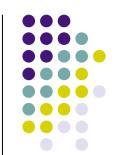
Déformée 3D

Convergence de l'adaptation (ε=10⁻⁵)



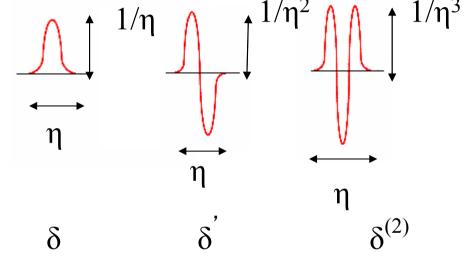
- Convergence des résultats de la à partir de la 5^{ème} itération
- Les singularités se propagent le long des génératrices

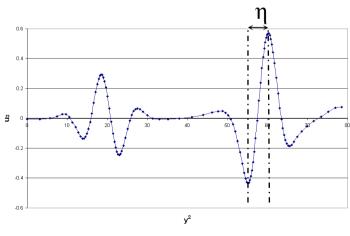
Amplitudes de u - Dépendance par rapport à ε



• L'amplitude des déplacements varie avec ε selon la singularité :

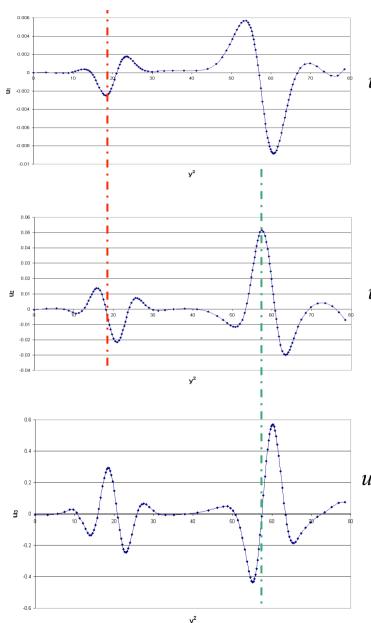
$$\begin{array}{cccc} \delta & en & \frac{1}{\eta} \\ \delta' & en & \frac{1}{\eta^2} \\ \vdots & & \\ \delta^{(n)} & en & \frac{1}{\eta^{n+1}} \end{array}$$





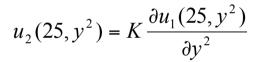
 U_3

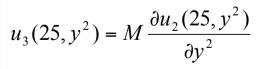
Forme des déplacements (pour y¹=l)

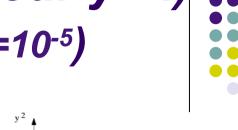


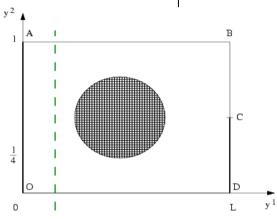
 $(\varepsilon=10^{-5})$

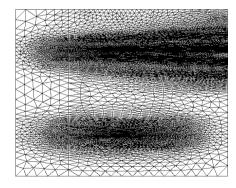
$$u_1(25, y^2)$$





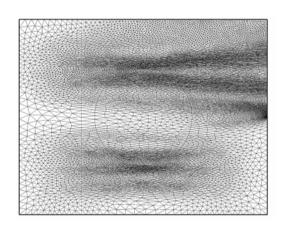


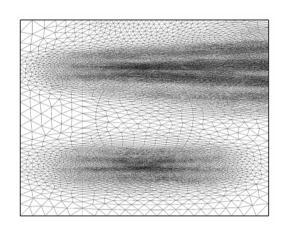


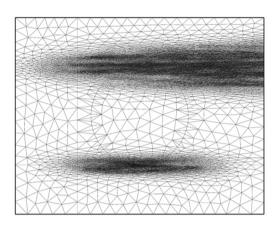


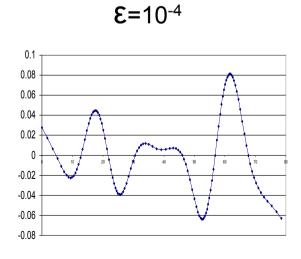
Bon agrément avec la théorie

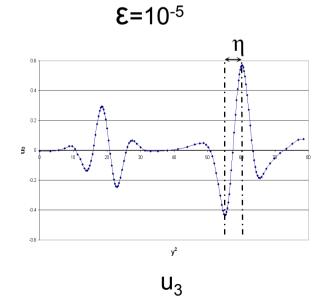
Epaisseur de couche limite

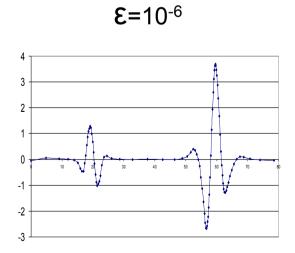








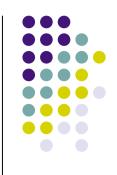




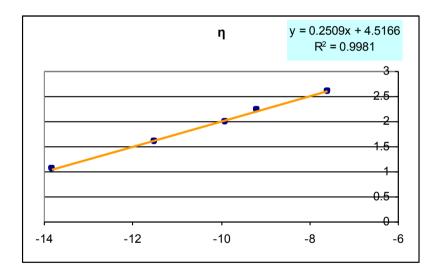
38

Résultats numériques

Epaisseur de couche - Dépendance par rapport à ε



Singularité sur une ligne caractéristique



η fonction de ε (échelle logarithmique)

- $\eta = O(\epsilon^{0.2509})$
- Résultat classique $\eta = O(\epsilon^{1/4})$ (E. Sanchez-Palencia)

Exemple d'illustration

Rupture d'un gazoduc à Ghislenghien (Belgium), juillet 2004

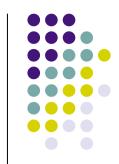
Propagation des singularités le long des génératrices

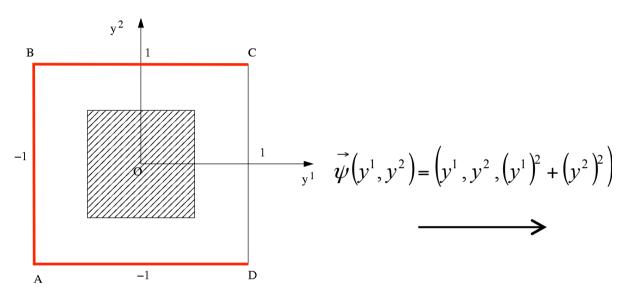
Cas Elliptique

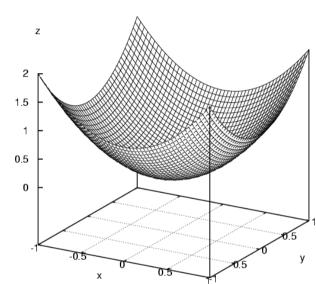
Spécificités

- Pas de lignes asymptotiques
- Importance des conditions aux limites
 - Bien inhibé (encastré sur tout le bord)
 - pas de propagation des singularités
 - u₃ a le même ordre de singularité que f³
 - épaisseur de couche limite de l'ordre de $\varepsilon^{1/2}$
 - Existence possible de singularités logarithmiques
 - Mal inhibé (une partie du bord est libre)
 - problème dit « sensitif »
 - pas de résultats théoriques généraux
 - problèmes modèles : le nombre d'oscillations sur le bord libre varie en ln(1/ε)

Exemple du paraboloïde elliptique

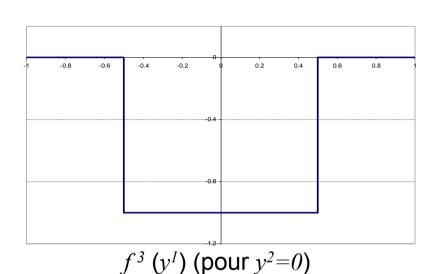


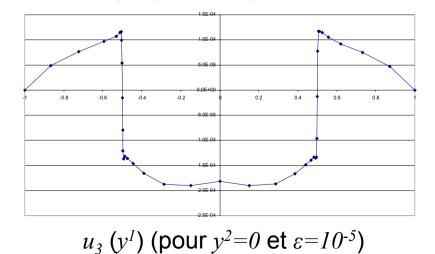


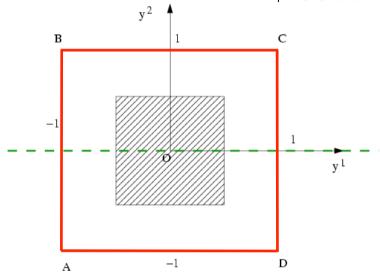


- Chargement $f^3 = -10\varepsilon$ appliqué dans le domaine de chargement (domaine hachuré)
- Conditions aux limites :
 - Encastré sur AB, BC et AD
 - Libre ou encastré sur CD

Cas bien inhibé: le bord CD est encastré



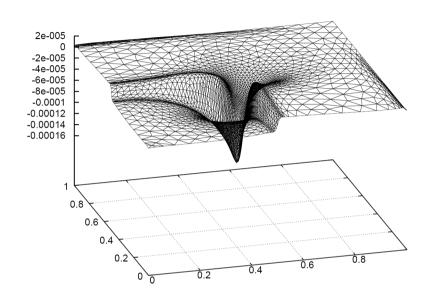


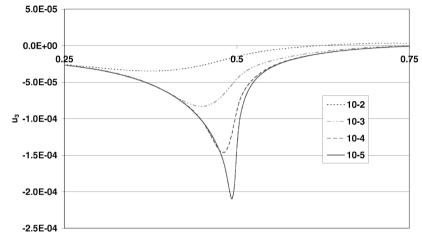


Visualisation sur la ligne $y^2 = 0$

 f^3 a les mêmes singularités que u_3 comme prédit la théorie

Singularité logarithmique ponctuelle





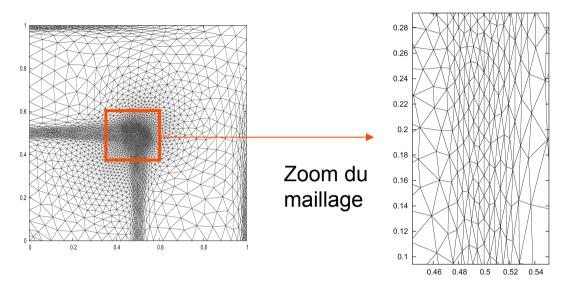
 u_3 sur $\frac{1}{4}$ du domaine

 u_3 sur la ligne $y^1 = y^2$

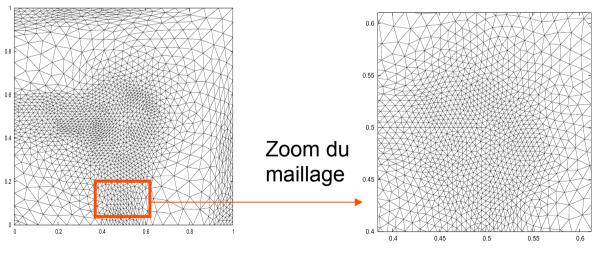
Existence d'une singularité logarithmique ponctuelle

- Si le domaine de chargement a un coin
- Si les courbures principales en ce point sont différentes

Maillage anisotrope adapté



Maillage anisotrope dans la couche

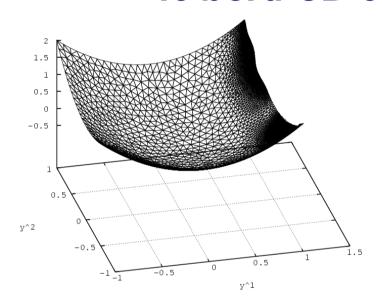


Nécessité d'une procédure adaptative

Maillage isotrope aux alentours du coin

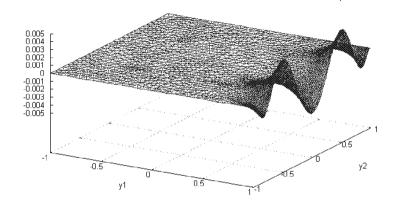
Cas sensitif

le bord CD est libre

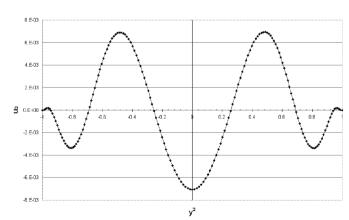


Forme de la déformée $\varepsilon = 10^{-4}$

- La condition de Shapiro-Lopatinskii n' est pas satisfaite
- Larges oscillations le long du bord libre

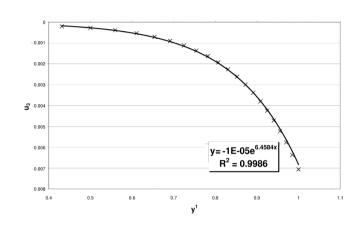


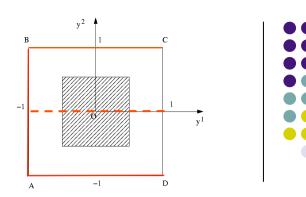
Déplacement u₃ pour ε=10⁻⁴



Déplacement u_3 pour $y^I=1$ et $\varepsilon=10^{-4}$

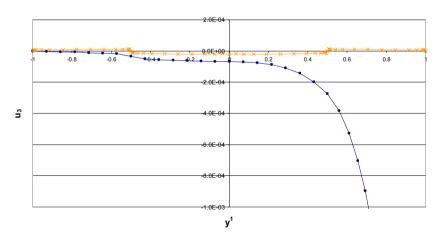
Cas sensitif





Oscillations exponentiellement décroissantes vers l'intérieur du domaine

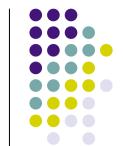
Comparaison avec le cas bien-inhibé

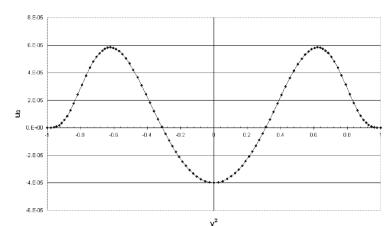


 u_3 sur la ligne $y^2=0$

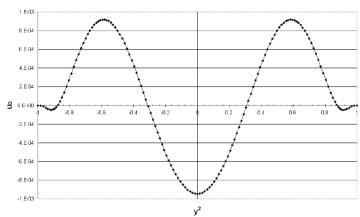
- Les singularités présentes dans le cas bien inhibé sont toujours présentes
- Elles sont cachées par les instabilités importantes qui apparaissent au voisinage du bord libre

Evolution des oscillations sur le bord libre

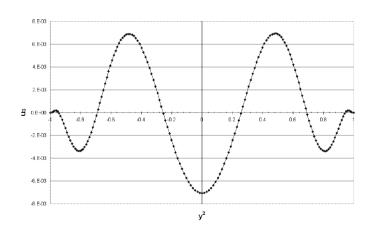




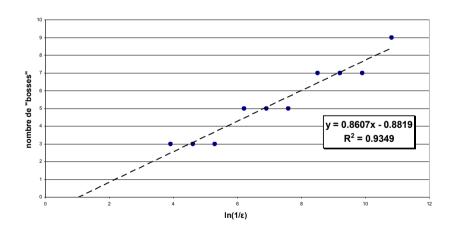
Déplacement u_3 pour $\varepsilon = 10^{-2}$



Déplacement u_3 pour $\varepsilon = 10^{-3}$

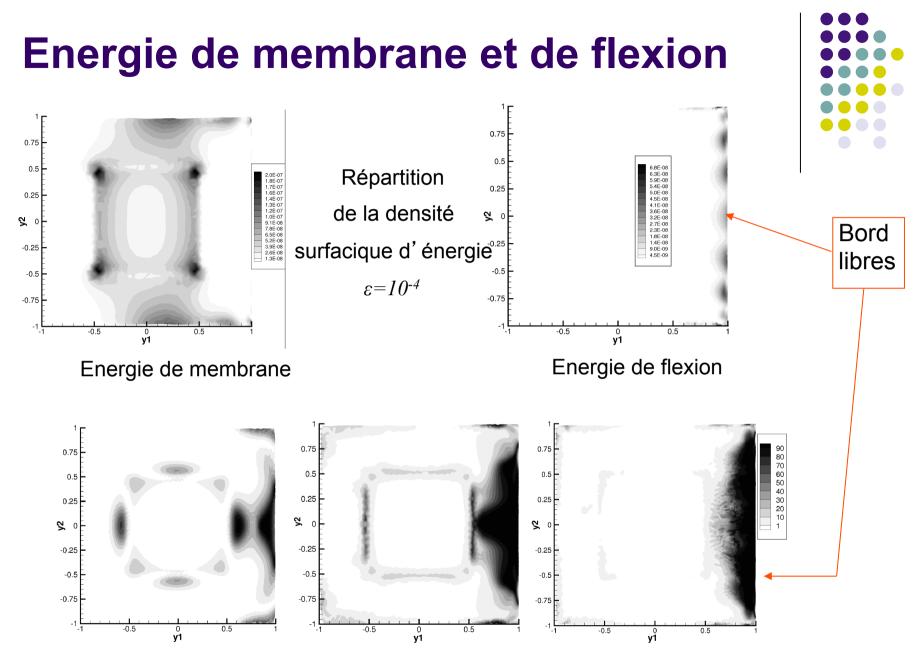


Déplacement u_3 pour $\varepsilon = 10^{-4}$



Nombre des oscillations vs $ln(1/\epsilon)$

Le nombre des oscillations varie comme $ln(1/\epsilon)$



Pourcentage d'énergie de flexion pour $\varepsilon=10^{-2}$, $\varepsilon=10^{-3}$ et $\varepsilon=10^{-4}$

Conclusions

- Théorie générale des singularités en théorie des coques
- Bonne concordance théorie / simulation numérique
- Simulations numériques réalisées avec MODULEF et BANG couplés ensemble
 - Maillage anisotrope adapté
 - raffinement seulement autour au voisinage des couches et des singularités
 - les déplacements approchent de façon très précise les singularités prédites par la théorie avec seulement un très petit nombre d'éléments